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A Study on Ergodicity and its Consequences
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Abstract
Ergodic theory, a profound mathematical field, delves into the long-term behavior of dynamic systems. This
concise overview begins by introducing fundamental measure theory concepts, such as measure spaces
and measurable functions. It then explores measure-preserving transformations with examples like Poincaré
recurrence and introduces the crucial concept of ergodicity, exemplified by irrational rotations. The article
culminates in an examination of ergodic theorems, prominently featuring Birkhoff’s ergodic theorem, which
elucidates the long-term statistical properties of evolving systems. This exploration provides valuable insights
into the captivating world of ergodic theory, with broad applications across diverse domains.
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1. Introduction and Preliminaries
1.1 Introduction
The word ergodic comes from two Greek words ergon (mean-
ing work) and odos (meaning path). Defining ergodic the-
ory in a proper manner is not so easy as it uses techniques

and examples from many fields such as statistical mechanics,
probability theory, measure theory, number theory, functional
analysis, group actions and many more. In a broad sense,
ergodic theory is a branch of mathematics where we study the
behavior of measure-preserving transformations. The word
ergodic is introduced by Boltzmann in statistical mechanics.

A modern description of what ergodic theory deals with
is as follows: It is the study of long-term average behavior of
systems evolving in time. The collection of all states of the
system form a space X and the evolution is represented by a
transformation T : X → X , where T x represents the state of
the system at time t = 1, when the system initially stated at x
at time t = 0.

The transformation T depends on the space X and we
want T to preserve the basic structure of X . For example:

• If X is a measure space, then T must be measurable.

• If X is a topological space, then T must be continuous.

1.2 Some Basic Definitions from Measure Theory
A measure space is a tuple (X ,β ,µ) where:

• X is any nonempty set,

• β is a σ -algebra, and

• µ is a measure on the space (X ,β ).

Definition 1.1 A σ -algebra on a set X is a collection of
subsets β such that:

• X ,φ ∈ β ,

• β is closed under complement, and

• β is closed under countable union.
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Definition 1.2 Given a nonempty set X with a σ -algebra
β on X , we define µ : β → R to be a measure if:

• ∀S ∈ β , µ(S)≥ 0,

• µ(φ) = 0, and

• For all countable collections {Si}∞
i=1 of pairwise dis-

joint sets in β :

µ

(
∞⋃

i=1

Si

)
=

∞

∑
i=1

µ(Si)

Definition 1.3 Let (X ,β ) and (Y,β ′) be two measure
spaces. A function f : X → Y is called measurable if for
all A ∈ β ′, f−1(A) ∈ β .

Lebesgue Outer Measure: If S⊆ R, the Lebesgue outer
measure of S is

µ
∗(S) = inf

{
∞

∑
k=1
|Ik| : S⊆

∞⋃
i=1

Ik,

where (Ik)
∞
k=1 is a collection of open intervals

}
where |Ik| is the length of the interval Ik.
Definition 1.4 If X is any topological space, then the

smallest σ -algebra generated by all the open sets in X is
called the Borel σ -algebra. Also, it is the smallest σ -algebra
containing all the closed sets.

Definition 1.5 A property P of points of a set S ⊆ X is
said to hold almost everywhere (a.e.) if the set of points of S
where the property fails has measure zero.

Definition 1.6 A measure µ on a measure space X is said
to be complete if for B⊆ A⊆ X and µ(A) = 0, then µ(B) = 0,
i.e., the measure of subsets of a measure-zero set is zero.

Definition 1.7 A measure space (X ,β ,µ) is said to be σ -
finite if X can be written as a countable union of measurable
sets of finite measure, i.e., X =

⋃
∞
i=1 Ai with µ(Ai)< ∞ for all

i.
Definition 1.8 Let (X ,β ,µ) be a complete measure space

and f : X→R be a measurable function, then for each integer
p≥ 1, we say that f ∈ Lp(µ) if∫

X
| f |p dµ < ∞.

For any such f ∈ Lp(µ), we may define the Lp-norm as

‖ f‖p =

(∫
X
| f |p dµ

)1/p

.

Identifying the functions whose values agree almost every-
where allows for defining a metric on the Lp(µ)-norm. We
treat Lp(µ) as the set of equivalence classes of functions
which coincide almost everywhere.

Definition 1.9 Let (X ,β ,µ) be a measure space. If µ(X)=
1, then µ is called a probability measure and (X ,β ,µ) is called
a probability space.

Dominated Convergence Theorem Suppose ( fn)
∞
n=1 is

a sequence of measurable functions and limn→∞ fn(x) = f (x)
for all x ∈ X , and | fn(x)| ≤ g(x) for all n ∈ N, x ∈ R, where g
is an integrable function. Then

lim
n→∞

∫
fn dµ =

∫
f dµ.

Monotone Convergence Theorem Suppose ( fn)
∞
n=1 is a

non-decreasing sequence of non-negative measurable func-
tions. Let f (x) = limn→∞ fn(x). Then,

lim
n→∞

∫
fn dµ =

∫
f dµ.

2. Measure Preserving Transformations

2.1 Definition
Let (X ,β ,µ) be a probability space, and T : X → X measur-
able. The map T is called measure preserving, or we call µ is
T -invariant if µ(T−1(S)) = µ(S) for all S ∈ β .

2.2 Examples of Measure Preserving Transforma-
tions

1. Translations - Let X = [0,1) with the Lebesgue σ -
algebra β and Lebesgue measure. Let 0 < θ < 1, define
T : X → X by

T x = x+θ mod 1 = x+θ −bx+θc .

Then clearly T is measure preserving.

2. Multiplication by 2 modulo 1 - Let (X ,β ,λ ) be as
above and let T : X → X be defined as follows

T x =

{
2x if 0≤ x < 1

2
2x−1 if 1

2 ≤ x < 1.

Then for any interval [a,b),

T−1[a,b) =
[

a
2
,

b
2

)
∪
[

a+1
2

,
b+1

2

)
,

and

λ (T−1[a,b)) = b−a = λ ([a,b)).

So, the transformation T is measure preserving.

3. Baker’s Transformation - Consider the space [0,1)2

with product Lebesgue σ -algebra β ×β and product
Lebesgue measure λ × λ . Now define T : [0,1)2 →
[0,1)2 by

T (x,y) =

{
(2x,y/2) if 0≤ x < 1

2
(2x−1,(y+1)/2) if 1

2 ≤ x < 1.

Then T is measurable and measure preserving.
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4. β -transformation - Let X = [0,1) with the Lebesgue
σ -algebra. Let α = 1+

√
5

2 , the golden ratio, and α2 =
α +1. Now define a transformation T : X → X by

T x =

{
αx if 0≤ x < 1

α

αx−1 if 1
α
≤ x < 1.

Here, T is measurable but not measure preserving with
respect to Lebesgue measure, as we can see T−1

( 1
α
,1
)
=(

1
α2 ,

1
α

)
. But, λ

(
T−1

( 1
α
,1
))
6= λ

((
1

α2 ,
1
α

))
. But,

this transformation T is measure preserving with re-
spect to the measure µ given by

µ(B) =
∫

B
g(x)dx,

where

g(x) =

{
5+3
√

5
10 if 0≤ x < 1

α

5+
√

5
10 if 1

α
≤ x < 1.

5. Continued Fraction - Consider (X ,β ) where β is the
Lebesgue σ -algebra. Define T : [0,1)→ [0,1) by T 0 =
0 and for x 6= 0,

T x = 1/x−
⌊

1
x

⌋
.

Then for any interval [a,b], T−1([a,b])=
⋃

∞
k=1
[ 1

b+k ,
1

a+k

]
.

So, T is not Lebesgue measure preserving, but it pre-
serves the Gauss probability measure µ given by

µ(B) =
1

log2

∫
B

1
1+ x

dx.

For any interval [0,b],

µ(T−1([0,b])) =
1

log2

∞

∑
n=1

∫ 1/n

1/(b+n)

1
1+ x

dx

=
1

log2

∞

∑
n=1

(log(1+1/n)− log(1+1/(b+n)))

=
1

log2

∞

∑
n=1

log
(
(n+1)(b+n)
n(b+n+1)

)
=

1
log2

∫ b

0

1
1+ x

dx

= µ([0,b]).

Taking intersections and unions of such intervals, we
can show that T preserves the Gauss probability mea-
sure.

3. Recurrence
3.1 Definition
Let T be a measure-preserving transformation on a probability
space (X ,β ,µ), and let B ∈ β . A point x ∈ B is said to be
B-recurrent if there exists k ≥ 1 such that T kx ∈ B.

3.2 Poincaré Recurrence Theorem
Theorem: Let T : X → X be a measure-preserving transfor-
mation on the probability space (X ,β ,µ). Let E ∈ β with
µ(E)< ∞. Then, almost every point x ∈ E there exists n≥ 1
such that T n(x) ∈ E. Moreover, there are infinitely many
values of n such that T n(x) ∈ E.

Proof: Let E0 be the set of points x ∈ E that never return
to E, i.e., T n(x) /∈ E for all n ≥ 0. We will show that the
measure of E0 is zero.

First, we will prove that

T−n(E0)∩T−m(E0) = /0 for all m 6= n≥ 1.

Suppose, m > n≥ 1 and

x ∈ T−n(E0)∩T−m(E0).

Then, T n(x) ∈ E0 and T m(x) ∈ E0. Now, let y = T n(x), then

y ∈ E0 and T m−n(y) = T m(x) ∈ E0

which means that y returns to E0, contradicting the definition
of E0. This proves our first claim.

Now, since T is measure-invariant, so µ(T−n(E0)) =
µ(E0) for all n, and hence we have

µ

(
∞⋃

i=1

T−i(E0)

)
=

∞

∑
i=1

µ(T−i(E0)) =
∞

∑
i=1

µ(E0).

Since X is of finite measure, so the left side of the expression
is of finite measure, hence µ(E0) = 0.

Now, let F be the set of points x ∈ E that return to E
only a finite number of times. By direct consequence of the
definition, every point x∈F has some iterate T k(x)∈E0. That
is,

F ⊆
∞⋃

i=1

T−i(E0).

Then,

µ(F)= µ

(
∞⋃

i=1

T−i(E0)

)
=

∞

∑
i=1

µ(T−i(E0))=
∞

∑
i=1

µ(E0)= 0.

Note: In the above theorem, it is necessary to assume
that the space is of finite measure. For example, consider T :
R→ R defined by T (x) = x+1, then T is Lebesgue measure
preserving but there is no recurring point under T .

3.3 Topological Flavours of Recurrence
3.3.1 Definition
Let X be a topological space endowed with the Borel σ -
algebra. We say that a point x ∈ X is recurrent for the trans-
formation T : X → X if there exists a sequence (nk) of natural
numbers such that T nk(x)→ x.
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3.3.2 Theorem
Let T : X → X be a continuous transformation in a compact
metric space X . Then, there exists some point x ∈ X recurrent
for T .

Proof: Consider the family I of all non-empty closed
sets M ⊂ X that are invariant under T , i.e., T (M) ⊂M. As
X ∈I , so I is non-empty.

We say that an element M ∈I is minimal for the inclusion
relation if and only if the orbit of the point x ∈M is dense in
M.

Certainly, since M is closed and invariant, then M contains
the closure of the orbits. Hence, M is minimal if it coincides
with any of the orbits’ closures. Likewise, if M coincides with
the closure of the orbit of any of its points, then it coincides
with any closed invariant subset, i.e., M is minimal. This
proves our claim. In particular, any point x in a minimal set
is recurrent. Hence, to prove the theorem, it suffices to show
that there exists a minimal set.

Now we claim that an ordered set {Mα} ⊂ I admits a
lower bound. Indeed, consider M =

⋂
α Mα . Notice that M is

non-empty since {Mα} are compact, and the family is ordered.
Clearly, M is closed and invariant under T , and it is also a
lower bound for the set {Mα}. This proves our claim. Now
by Zorn’s lemma, I contains a minimal element. Hence the
theorem.

4. Ergodicity

4.1 Definition
Let T be a measure-preserving transformation on a probability
space (X ,β ,µ). The map T is said to be ergodic if for every
measurable set A satisfying T−1A = A, we have µ(A) = 0 or
µ(A) = 1.

The definition of ergodicity for (X ,β ,µ,T ) means that it
is impossible to split X into two subsets of positive measure,
each of which is invariant under T .

4.2 Examples of Ergodic Transformations
1. Irrational Rotation - Consider ([0,1),β ,λ ), where β is the
Lebesgue σ -algebra and λ is the Lebesgue measure. For θ ∈
(0,1), consider the transformation Tθ : [0,1)→ [0,1) defined
by Tθ x = x+θ(mod 1). Then Tθ is measure-preserving with
respect to λ . We can see that if θ is rational, then Tθ is not
ergodic, as if we take θ = p/q, gcd(p,q) = 1, then T q

θ
is

the identity map. Now if we pick ε to be sufficiently small
such that ε-neighborhoods of x+ kθ , k = 0,1,2, . . . ,q− 1,
are disjoint. Then the union of these neighborhoods is an
invariant set of positive measure. So Tθ is not ergodic when θ

is rational.
2. Multiplication by 2 modulo 1 - Let (X ,β ,µ) as above

and define T : X → X given by

T x =

{
2x if 0≤ x < 1

2
2x−1 if 1

2 ≤ x < 1

Then, T is measure-preserving and ergodic.

3. Consider the space ([0,1)2,β ×β ,λ ×λ ), where β is
the Lebesgue σ -algebra and λ is the normalized Lebesgue
measure. Suppose θ ∈ (0,1) is irrational and define Tθ ×Tθ :
[0,1)× [0,1)→ [0,1)× [0,1) by

Tθ ×Tθ (x,y) = (x+θ(mod 1),y+θ(mod 1))

Here, Tθ ×Tθ is measure-preserving but not ergodic.

4.3 Some Characterizations of Ergodic Maps
4.3.1 Theorem:
Let (X ,β ,µ) be a probability space and T : X→X be measure-
preserving. Then the following are equivalent: 1. T is ergodic.
2. If B∈ β with µ(T−1B4B) = 0, then µ(B) = 0 or µ(B) = 1.
3. If A ∈ β with µ(A)> 0, then µ (

⋃
∞
n=1 T−nA) = 1 (i.e., if A

is a set of positive measure, almost every x ∈ X will visit A
infinitely often). 4. If A,B ∈ β with µ(A)> 0 and µ(B)> 0,
then there exists n > 0 such that µ(T−nA∩B) > 0 (i.e., ele-
ments of B will eventually enter A).

Proof: (1) ⇒ (2): Let B ∈ β such that µ(B4T−1B) =
0. We will define a measurable set C with C = T−1C and
µ(C4B) = 0. Let

C = {x ∈ X : T nx ∈ B i.o.}=
∞⋂

n=1

∞⋃
k=n

T−kB

Then, T−1C = C, hence by (1) µ(C) = 0 or µ(C) = 1. Fur-
thermore,

µ(C4B) = µ

(
∞⋂

n=1

∞⋃
k=n

T−kB4B

)

≤ µ

(
∞⋃

k=1

T−kB4B

)

≤
∞

∑
k=1

µ(T−kB4B).

Using induction and the fact that µ(E4F) ≤ µ(E4G) +
µ(G4F), we can show that for each k≥ 1, we have µ(T−kB4B)=
0. Hence, µ(C4B) = 0, which implies µ(C) = µ(B). There-
fore, µ(B) = 0 or µ(B) = 1.

(2) ⇒ (3): Let µ(A) > 0 and B =
⋃

∞
n=1 T−nA. Then,

T−1B ⊂ B. Since T is measure-preserving, then µ(B) > 0
and

µ(T−1B4B) = µ(B\T−1B) = µ(B)−µ(T−1B) = 0

Thus, by (2), µ(B) = 1.
(3)⇒ (4): Suppose µ(A)µ(B)> 0. By (3),

µ(B) = µ

(
∞⋃

n=1

T−nA

)
= 1

Hence, there exists k ≥ 1 such that µ(B∩T−kA)> 0.
(4)⇒ (1): Suppose T−1A = A with µ(A)> 0. If µ(Ac)>

0, then by (4), there exists k ≥ 1 such that µ(Ac∩T−kA)> 0.
Since T−kA=A, it follows that µ(Ac∩A)> 0, a contradiction.
Hence, µ(A) = 1, and T is ergodic.
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4.3.2 Theorem:
Let (X ,β ,µ) be a probability space and T : X→X be measure-
preserving. Then T is ergodic if and only if for every real-
valued measurable function f that is invariant under T , f is
constant almost everywhere.

Proof: Suppose T is ergodic, and let f be a real-valued
measurable function such that f (T x) = f (x) for all x ∈ X . So
the sets Ca = {x | f (x)< a,a ∈ R} are invariant under T , so
by ergodicity, µ(Ca) = 0 or µ(X −Ca) = 0. Now if a ≤ b,
then Ca ⊆Cb. Let α = l.u.b. {a | µ(Ca) = 0}. If a < α < b,
then µ(Ca) = 0, µ(X−Cb) = 0, so that

µ{x | a < f (x)< b}= µ(Cb−Ca) = µ(Cb) = µ(X).

So the set

{x | f (x) = α}=
∞⋂

n=1

{x | α−1/n < f (x)< α +1/n}

has full measure. So f is constant almost everywhere.
Conversely, suppose every T -invariant real-valued mea-

surable function on X is constant almost everywhere. Let
A ∈ β such that T−1A = A. Then the function 1A is real-
valued, measurable, and T -invariant, hence must be constant
almost everywhere. The constant must be zero or one be-
cause 1A takes values 0 or 1. If 1A(x) = 0 almost everywhere,
then µ(A) = 0, and if 1A(x) = 1 almost everywhere, then
µ(X−A) = 0. Hence, the proof.

5. Ergodic Theorems and Their
Consequences

5.1 Ergodic Theorem for Permutations
Before going to the measure-theoretic setup, let us check one
form of the ergodic theorem on a finite set with a permutation
of its elements. Suppose X is a finite set X = {x1,x2, . . . ,xN}
and σ is an irreducible permutation on X . Let f be a real-
valued function on X . Then, we can see that the limit

lim
n→∞

1
n

n−1

∑
k=0

f (σ kx)

exists for all x ∈ X and is equal to 1
N ( f (x1)+ . . .+ f (xN)).

To see this, we have from the division algorithm n = Nl + r,
where 0≤ r < N. Since N is fixed and 0≤ r < N, if n→ ∞,
then l→ ∞.

Now, since σ is irreducible, for any x ∈ X , σNx = x, and
likewise σ2Nx = x, . . . ,σ lNx = x. Hence,

n−1

∑
k=0

f (σ kx)

= f (x)+ . . .+ f (σN−1x)

+ f (x)+ . . .+ f (σN−1x)
...

+ f (x)+ . . .+ f (σ r−1x)

Therefore,

1
n

n−1

∑
k=0

f (σ kx) =
1

Nl + r
l( f (x)+ . . .+ f (σN−1x))

+
1

Nl + r
( f (x)+ . . .+ f (σ r−1x)).

Now, since r is bounded and l→ ∞ as n→ ∞, we have

lim
n→∞

1
n

n−1

∑
k=0

f (σ kx) =
1
N
( f (x1)+ . . .+ f (xN)).

Now, we will move to the measure-theoretic setup. Let
(X ,B,µ) be a probability space, T be a measure-preserving
transformation on X , and f be a real-valued function on X . As
we have done in the finite set with the permutation as above,
here also we can raise the same question: Does the

lim
n→∞

1
n

n−1

∑
k=0

f (T kx)

exist, or find the conditions under which this limit exists?
This question was first raised by Boltzmann and Gibbs

in their statistical mechanics work. In 1931, Birkhoff proved
that this limit exists for any T and f almost everywhere.

5.2 Birkhoff Ergodic Theorem
Theorem: Let (X ,B,µ) be a probability space, and T : X →
X be a measure-preserving transformation. Then, for any
f ∈ L1(µ), the limit

lim
n→∞

1
n

n−1

∑
i=0

f (T i(x)) = f ∗(x)

exists almost everywhere, is T -invariant, and
∫

X f dµ =
∫

X f ∗ dµ .
Moreover, if T is ergodic, then f ∗ is constant almost every-
where, and f ∗ =

∫
X f dµ .

Proof: The proof involves using a lemma and showing
that f ∗ exists, is integrable, and T -invariant.

Lemma: Let M be a positive integer, and {an}n≥0 and
{bn}n≥0 be two sequences of non-negative real numbers such
that for each n = 0,1,2, . . ., there exists an integer 1≤m≤M
with

an + . . .+an+m−1 ≥ bn + . . .+bn+m−1.

Then, for each positive integer N > M, we have

a0 + . . .+aN−1 ≥ b0 + . . .+bN−M−1.

Proof of the Lemma: By using the hypothesis recur-
sively, we can find integers m0 < m1 < .. . < N such that

m0≤M, mi+1−mi≤M for i= 0,1, . . . ,k−1, and N−mk <M,

a0 + . . .+am0−1 ≥ b0 + . . .+bm0−1,

am0 + . . .+am1−1 ≥ bm0 + . . .+bm1−1,

...
amk−1 + . . .+amk−1 ≥ bmk−1 + . . .+bN−M−1.
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Therefore,

a0 + . . .+aN−1 ≥ a0 + . . .+amk−1

≥ b0 + . . .+bmk−1

≥ b0 + . . .+bN−M−1.

Proof of the Theorem: The proof involves showing that∫
X f ∗ dµ ≤

∫
X f dµ and

∫
X f dµ ≤

∫
X f ∗ dµ .

Corollary: Let (X ,B,µ) be a probability space, and T :
X → X be a measure-preserving transformation. Then, T is
ergodic if and only if for all A,B ∈B, we have

lim
n→∞

1
n

n−1

∑
i=0

µ(T−iA∩B) = µ(A)µ(B).

Proof: The proof of this corollary involves showing the
equivalence between ergodicity and the given condition.

6. Conclusion
The notion of ergodicity and ergodic theorems has a lot of
applications in different branches of mathematics. In this
chapter, we have seen the ergodic behavior of the Contin-
ued Fraction Transformation. By using the Birkhoff Ergodic
Theorem, we can prove that for almost every x∈ [0,1], the ele-
ments of the continued fraction expansion of x are unbounded.
This is an application of ergodic theorems in number theory.
Likewise, we can use ergodic theory to solve many problems
in number theory. In probability theory, we have many ap-
plications of ergodic theory. For example, the strong law of
large numbers can be viewed as a special case of the Birkhoff
Ergodic Theorem. Other branches of mathematics like hyper-
bolic geometry, differential geometry, statistical mechanics,
functional analysis, etc., also have a great demand for ergodic
theorems. A limitation of the Birkhoff Ergodic Theorem is
that it only gives assurance of almost everywhere convergence.
To extend the statement of the Birkhoff Ergodic Theorem to
have convergence everywhere on the measure space, we need
some stronger condition like unique ergodicity on the trans-
formation.
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